Prostate cancer (PCa) is a difficult disease to understand. The tumor's genetic diversity increases as mutations accumulate, resulting in distinct subclones. On the other hand, non-genetic intra-tumoral heterogeneity, the cellular differentiation state, and the interaction between subclonal evolution and transcriptional heterogeneity, on the other hand, are poorly understood. The authors performed single-cell RNA sequencing on 14 untreated PCa patients in this study. They developed a comprehensive cell atlas of PCa patients and mapped developmental states onto tumor subclonal evolution. They find distinct subclones in PCa patients and then divide tumor cells into four transcriptional subtypes: EMT-like (subtype 0), luminal A-like (subtype 1), luminal B/C-like (subtype 2), and basal-like (subtype 3). These subtypes are organized hierarchically into stem cell-like and differentiated states. Surprisingly, multiple subclones within a single primary tumor have distinct preferential subtype combinations. Furthermore, subclones exhibit varying levels of communication with other cell types within the tumor ecosystem, which may modulate the distinct transcriptional subtypes of the subclones. Notably, they discovered that tumor cell transcriptional heterogeneity and cellular ecosystem diversity correlate with features of a poor prognosis by integrating TCGA data. Their research examines subclonal and transcriptional heterogeneity and its implications for patient prognosis.
Application of Genome Sequencing Technology in Newborn ScreeningNovember 13, 2024Newborn screening is a successful public health initiative that prevents diseases and reduces mortality through early diagnosis and disease management. In the era of precision medicine, the expansion ...view
In Vitro Diagnosis: Silent Defenders of the Medical IndustryApril 4, 2023The so-called in vitro diagnosis refers to the objective information about health and disease obtained through the detection of patients' blood and other samples (such as urine, tissue cells). Suc...view
What Are the Main Processes of DNA Microarray Technology?March 8, 2023The principle of DNA microarray technology is to integrate gene probes with known sequences onto a solid surface. A large number of labeled nucleic acid sequences from the tested biological cells or t...view
Next Generation Sequencing (NGS) TechnologyApril 8, 2024Next Generation Sequencing (NGS), also known as high-throughput sequencing, revolutionized the field of genomics. Unlike traditional Sanger sequencing methods, NGS allows researchers to analyze vast a...view